Theoretical Data on the Multicoordination of Phosphorus and Arsenic

Georges Trinquier, *1a Jean-Pierre Daudey, ${ }^{1 \mathrm{a}}$ Geneviève Caruana, ${ }^{1 \mathrm{~b}}$ and Yves Madaule ${ }^{1 \mathrm{c}}$
Contribution from the Laboratoire de Physique Quantique (E.R.A. 821), Laboratoire d'Elaboration et Structure des Molécules Phosphorēes (E.R.A. 926), and Laboratoire de Synthèse et Physicochimie Organique (E.R.A. 686), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France. Received May 2, 1983

Abstract

Some multicoordinate model compounds of phosphorus and arsenic are investigated by abinitio effective potential calculations at both SCF and CI levels. Structures and relative stabilities of the species $\mathrm{MX}_{3}, \mathrm{MX}_{4}{ }^{+}, \mathrm{MX}_{4}{ }^{-}, \mathrm{MX}_{5}$, and $\mathrm{MX}_{6}{ }^{-}$ are reported for $\mathrm{M}=\mathrm{P}, \mathrm{X}=\mathrm{H}$ and Cl , and $\mathrm{M}=\mathrm{As}, \mathrm{X}=\mathrm{H}$. The Lewis acid properties of phosphoranes and arsoranes (MX_{5}) are shown. The barrier to Berry pseudorotation is calculated at $2.0 \mathrm{kcal} / \mathrm{mol}^{\text {for }} \mathrm{PH}_{5}$ and $2.5 \mathrm{kcal} / \mathrm{mol}$ for AsH_{5}. Within their respective series, arsoranide AsH_{4}^{-}appears relatively more stable than phosphoranide PH_{4}^{-}. Two possible pathways for isomerization of hexacoordinate phosphorus compounds are compared; the easier way appears to occur through a bond rupture.

I. Introduction

An important difference between the first and subsequent rows of the main-group elements is the ability of the latter to be involved in hypervalent molecules. Hypervalence was first seen as the structural consequence of mixing $n s$ and $n p$ valence atomic orbitals (AO's) with n d valence AO's, giving hybrids such as $\mathrm{sp}^{3} \mathrm{~d}$ in PCl_{5} and $\mathrm{sp}^{3} \mathrm{~d}^{2}$ in $\mathrm{PCl}_{6}{ }^{-}$. However, theoretical studies always show a very small occupation of the d valence AO's for these molecules. Consequently another model, namely the formation of three-center four-electron (or electron rich) bonds, was presented to explain the violation of the octet rule in hypervalence. ${ }^{2}$

The elements of group 5B provide a good example of hypervalence. Nitrogen does not form hypervalent molecules whereas hypervalent phosphorus compounds are stable and common (e.g., phosphoranes PR_{5}).

There are other ways to characterize the state of an atom in a given environment; these are (i) the oxidation number (more formal and less useful for non-metal main-group atoms), (ii) the number of electrons shared by the atom, ${ }^{3}$ and (iii) the coordination number. The last concept only considers the number of neighbors linked to the studied atom. For instance, there are various compounds in which a phosphorus atom is mono-, di-, tri-, tetra-, penta-, or hexacoordinate. This nomenclature appears to be non-ambiguous, and for this reason we shall use it in this work.

There have been many theoretical studies on group 5B hypervalent molecules, mainly those involving phosphorus. ${ }^{4-13}$ The primary object of this work was to give energetic information on the stability of hexacoordinate phosphorus compounds through ab initio calculations. Only the systems in which phosphorus shares 12 electrons, such as $\mathrm{PCl}_{6}{ }^{-}$, are considered here. Such systems

[^0]are known, and questions arise about their formation from pentacoordinate derivatives and about their isomerization. ${ }^{14.15}$ The specific case of tris-chelate derivatives was also studied experimentally in our group. ${ }^{16}$

In this work, we have computed the relative stabilities of the various species $\mathrm{PX}_{3}, \mathrm{PX}_{4}{ }^{+}, \mathrm{PX}_{4}^{-}, \mathrm{PX}_{5}$, and $\mathrm{PX}_{6}{ }^{-}$. First, we studied the models in which $\mathrm{X}=\mathrm{H}$, for which we included the correlation effects in our calculations. Some theoretical data were already available on these models (such as for the reaction $\mathrm{PH}_{3}+\mathrm{H}_{2} \rightarrow$ PH_{5}), ${ }^{13}$ which we treated again for the sake of consistency. Second, we have considered the real molecules with $\mathrm{X}=\mathrm{Cl}$ for which some structural and thermodynamic data are available. Last, we performed similar investigations on arsenic by carrying out calculations on the AsH_{n} models. Although the multicoordination chemistry of arsenic is less developed than that of phosphorus, differences between the chemical behavior of these two atoms, some concerning the preferred coordination, have been pointed out. ${ }^{17-21}$ Additionally, the calculated barriers to Berry pseudorotation are reported for PH_{5} and AsH_{5}.
The calculations on these relatively "heavy" molecules were made possible by use of pseudopotential techniques which allow explicit treatment of only valence electrons in the calculations. Thereby reliable valence basis sets could be used and configuration interactions (CI) could be carried out on the PH_{n} and AsH_{n} systems.

II. Computational Means and Basis Sets

The ab initio valence-only SCF + CI calculations were performed by using the pseudopotential method of Durand and Barthelat. ${ }^{22}$ The SCF program is the HONDO package ${ }^{23}$ modified by one of us (J.P.D.) to include pseudopotential and named PSHONDO program. The performance of this pseudopotential technique has been tested by many calculations on molecules containing second- and third-row atoms. ${ }^{24-30}$ The present cal-

[^1]Table I. SCF Calculated Geometries for $\mathrm{PH}_{n}, \mathrm{AsH}_{n}$, and PCl_{n} Systems ${ }^{a}$

molecules	symmetry	parameters	PH_{n}	AsH_{n}	PCl_{n}
MX ${ }_{3}$	$C_{3 v}$	a	1.416 (1.420)	1.527 (1.520)	2.101, 2.055^{b} (2.043)
		α	95.4 (93.3)	94.3 (92.0)	100.0, 100.6 (100.1)
MX ${ }_{4}{ }^{+}$	T_{d}	a	$1.397(1.42)^{c}$	1.497	2.001 (1.98) $^{\text {c }}$
$\mathrm{MX}_{4}{ }^{-}$	C_{20}	a (ax)	1.716	1.845	2.467
		b (eq)	1.409	1.523	2.125
		α	165.6	164.6	185.2
		β	102.8	100.1	99.8
MX ${ }_{5}$	$D_{3 h}$	a (ax)	1.478	1.612	$2.211(2.12)^{d}$
		b (eq)	1.418	1.528	2.063 (2.02) ${ }^{d}$
$\mathrm{MX}_{6}{ }^{-}$	O_{h}	a	1.494	1.620	2.219 (2.07) $^{\text {c }}$
$\mathrm{MX}_{6}{ }^{-}$	$D_{3 h}$	a	1.519		2.308
		α	82.2		79.8
H_{2}		a	0.748 (0.741)		
Cl_{2}		a			2.146 (1.988)

[^2]culations also provide reliable comparisons with all-electron ab initio studies.

For chlorine and phosphorus atoms, a four primitive Gaussian basis set has been optimized in pseudopotential Hartree-Fock (HF) calculations and then contracted to a double- ζ basis. For phosphorus a 3d polarization orbital ($\eta_{\mathrm{d}}=0.57$) was added, taken from ref 13 and corresponding to the optimum value of PH_{3}. For chlorine, one additional s orbital ($\eta_{\mathrm{s}}=0.058$) and p orbital (η_{p} $=0.043$) were optimized in pseudopotential HF calculations on Cl^{-}, leading to a calculated electron affinity (2.63 eV) in good agreement with the near-HF all-electron value (2.58 eV). ${ }^{31}$ This basis set for chlorine was completed by a 3d polarization function ($\eta_{\mathrm{d}}=0.63$) for test calculations on PCl_{3} (see section IV). The hydrogen basis set is a 4 s Huzinaga ${ }^{32}$ basis augmented by a flat s orbital $\left(\eta_{\mathrm{s}}=0.03\right)$ and polarization p orbital ($\eta_{\mathrm{p}}=0.65$) taken from basis set C of ref 13 .

For the phosphorus and arsenic hydrides PH_{n} and AsH_{n}, correlation energy calculations were performed with the CIPSI method ${ }^{33,34}$ in which a multideterminantal wave function is built upon the most important determinants. This zeroth-order description is then improved through the second-order RayleighSchrödinger perturbation theory. All determinants whose coefficients in the first-order perturbed wave function are greater than a given threshold are included in the reference space in the next step; the process may be iterated up to the desired precision. In the current calculations, the threshold was fixed to 0.02 which corresponds to a dimension for the reference space ranging from 20 to 35 determinants.

III. PH_{n} Systems

A. Structures. The geometrical structures calculated in this work are all reported in Figure 1 and Table I. For PH_{n} molecules, our computed structures are in good agreement with the previous all-electron results as long as the valence basis sets are comparable. ${ }^{11.13} \mathrm{PH}_{4}{ }^{-}$, which is a 10 -electron (on phosphorus) entity, has a $C_{2 w}$ structure as expected from the VSEPR model. the $C_{4 v}$ square-pyramidal form ($\mathrm{P}-\mathrm{H}=1.473 \AA ; \angle \mathrm{HPH}=103.3^{\circ}$) is
(25) Barthelat, J. C.; Trinquier, G.; Bertrand, G. J. Am. Chem. Soc. 1979, 101, 3785.
(26) Trinquier, G.; Malrieu, J. P. J. Am. Chem. Soc. 1979, 101, 7169.
(27) Barthelat, J. C.; Saint-Roch, B.; Trinquier, G.; Satgē, J. J. Am. Chem. Soc. 1980, 102, 4080.
(28) Trinquier, G.; Malrieu, J. P. J. Am. Chem. Soc. 1981, 103, 6313.
(29) Trinquier, G.; Marre, M. R. J. Phys. Chem. 1983, 87, 1903.
(30) Trinquier, G. J. Am. Chem. Soc. 1982, 104, 6969.
(31) Clementi, E.; Roetti, C. At. Data Nucl. Data Tables 1974, 14, 177.
(32) Huzinaga, S. J. Chem. Phys. 1965, 32, 1293.
(33) Huron, B.; Malrieu, J. P.; Rancurel, P. J. Chem. Phys. 1973, 58, 5745.
(34) Daudey, J. P.; Malrieu, J. P. In "Current aspects of Quantum Chemistry"; Carbo, Ed.; Elsevier Scientific Publishing Co., Amsterdam, 1982.

$$
\begin{array}{lllll}
M X_{5} & D_{3 h} & M X_{6}^{-} & O_{h} & M X_{6}^{-}
\end{array} D_{3 h}
$$

Figure 1. Definition of the geometrical parameters given in Table I. calculated to be $9 \mathrm{kcal} / \mathrm{mol}$ higher than the $C_{2 v}$ form (SCF level). This value is not necessarily the barrier for Berry pseudorotation of PH_{4}^{-}since the transition state for the pseudorotation of a $\mathrm{PR}_{4}{ }^{-}$ system does not necessarily have a $C_{4 v}$ symmetry, 1.

Table II. Mulliken Population Analyses

	net atomic charges				calcd dipole moment, ${ }^{a}$
	P or As	H	Cl	or As	D
PH_{3}	+0.21	-0.07		0.09	$\begin{aligned} & 0.97 \\ & (0.58) \end{aligned}$
$\mathrm{PH}_{4}{ }^{+}$	+0.68	+0.08		0.12	
$\mathrm{PH}_{4}{ }^{-}$	+0.20	$\left\{\begin{array}{r}-0.60 \mathrm{ax} \\ 0.00 \mathrm{eq}\end{array}\right.$		0.14	0.58
PH_{5}	+0.66	$\left\{\begin{array}{l}-0.21 \mathrm{ax} \\ -0.08 \mathrm{eq}\end{array}\right.$		0.26	
$\mathrm{PH}_{6}{ }^{-}$	+0.68	-0.28		0.34	
AsH_{3}	+0.21	-0.07		0.10	$\begin{aligned} & 0.42 \\ & \quad(0.20) \end{aligned}$
AsH ${ }_{4}{ }^{+}$	+0.60	+0.10		0.12	
AsH ${ }_{4}{ }^{-}$	+0.24	$\left\{\begin{array}{l}-0.58 \mathrm{ax} \\ -0.04 \mathrm{eq}\end{array}\right.$		0.16	1.12
AsH_{5}	+0.68	$\left\{\begin{array}{l}-0.25 \mathrm{ax} \\ -0.06 \mathrm{eq}\end{array}\right.$		0.26	
$\mathrm{AsH}_{6}{ }^{-}$	+0.86	-0.31		0.35	
$\mathrm{PCl}_{3}{ }_{6}$	+0.39		-0.13	0.18	1.80
$\mathrm{PCl}_{3}{ }^{6}$	+0.51		-0.17	0.20	$\begin{aligned} & 0.98 \\ & (0.78) \end{aligned}$
$\mathrm{PCl}_{4}{ }^{+}$	-0.12		+0.28	0.36	
$\mathrm{PCl}_{4}{ }^{-}$	+0.58		$\left\{\begin{array}{l} -0.63 \mathrm{ax} \\ -0.16 \mathrm{eq} \end{array}\right.$	0.16	1.69
PCl_{5}	+0.03		$\left\{\begin{array}{l} -0.21 \mathrm{ax} \\ +0.13 \mathrm{eq} \end{array}\right.$	0.35	
$\mathrm{PCl}_{6}{ }^{-}$	+0.14		-0.19	0.33	
$\underset{\left(D_{3} h\right)}{\mathrm{PCl}_{6}^{-}}$	+0.38		-0.23	0.24	

${ }^{a}$ Experimental values in parentheses, from ref 38. ${ }^{b}$ With d functions on chlorine.

The $C_{4 v}$ geometry of PH_{5} has also been calculated and is reported later in this work (the discussion about Berry pseudorotation in PH_{5} and AsH_{5}).

The PH bond lengths are in the range $1.40-1.42 \AA$ except for axial bonds in PH_{5} and PH_{4}^{-}and bonds in PH_{6}^{-}. In PH_{4}^{-}the axial bonds are particularily long ($1.72 \AA$). This can also be noticed in PCl_{4}^{-}and AsH_{4}^{-}.
$\mathrm{PH}_{6}{ }^{-}$in which phosphorus bears 12 electrons, as sulfur does in $\mathrm{SH}_{6},{ }^{9}$ has an octahedral geometry as expected also from the VSEPR model. The $D_{3 h}$ structure is found to be much less stable. The PH bond in $\mathrm{PH}_{6}-\left(O_{h}\right)$ is slightly longer than the axial PH bond in PH_{5}. In $\mathrm{PH}_{6}-\left(D_{3 h}\right)$, the PH bond is even longer, possibly due to the repulsion between the $\mathrm{H}^{-\delta}$ s. Our calculated O_{h} and $D_{3 h}$ geometries for $\mathrm{PH}_{6}{ }^{-}$are in agreement with MINDO/3 results. ${ }^{37}$

The Mulliken population analyses are reported in Table II. PH_{4}^{-}bears its negative charge mainly on the axial hydrogens. In $\mathrm{PH}_{6}{ }^{-}$(both O_{h} and $D_{3 h}$) the negative charge is pushed toward the hydrogen atoms so that phosphorus remains as positive as in $\mathrm{PH}_{4}{ }^{+}$. This withdrawing of electrons may be due to our rich basis set for hydrogen. However, a deeper inspection of Table II shows that the central atom charges fall into two groups: a set of values (~ 0.2) for PH_{3} and PH_{4}^{-}and a larger but nearly constant set of values for $\mathrm{PH}_{4}^{+}, \mathrm{PH}_{3}$, and $\mathrm{PH}_{6}{ }^{-}$. This can be accounted for by a similar hybridization in PH_{3} and PH_{4}^{-}, both of which possess a single lone pair. ${ }^{39}$
(35) Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J. Phys. Chem. Ref. Data 1979, 8, 619.
(36) (a) Sutton, L. E. "Interatomic distances"; Chemical Society; London, 1958; Spec. Publ. No. 11. (b) McClelland, B. W.; Hedberg, L.; Hedberg, K. J. Mol. Struct. 1983, 99, 313.
(37) Minyaev, R. M.; Minkin, V. I. Zh. Strukt. Khim. 1979, $20,842$.
(38) "Handbook of Chemistry and Physics"; 61st ed.; Weast, R. C., Astle, M. J., Eds; CRC Press: Boca Raton, 1980.

Table III. Calculated Reaction Energies for PH_{n} Systems

	$\Delta E,{ }^{a} \mathrm{kcal} / \mathrm{mol}$	
reactions	SCF	CI
$\mathrm{PH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{PH}_{4}{ }^{+}$	-197.3	-194.6
$\mathrm{PH}_{3}+\mathrm{H}^{-} \rightarrow \mathrm{PH}_{4}{ }^{-}$	+4.8	+1.4
$\mathrm{PH}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{PH}_{5}$	+45.0	+45.0
$\mathrm{PH}_{3}+2 \mathrm{H} \rightarrow \mathrm{PH}_{5}$	-36.6	-58.9
$\mathrm{PH}_{4}{ }^{+}+\mathrm{H}^{-} \rightarrow \mathrm{PH}_{5}$	-160.4	-166.9
$\mathrm{PH}_{4}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{PH}_{5}$	-362.5	-361.8
$\mathrm{PH}_{4}^{-}+\mathrm{H}_{2} \rightarrow \mathrm{PH}_{6}^{-}$	+10.8	+10.7
$\mathrm{PH}_{5}+\mathrm{H}^{-} \rightarrow \mathrm{PH}_{6}$	-29.4	-31.7
$\mathrm{PH}_{6}^{-}+\mathrm{PH}_{4}{ }^{+} \rightarrow 2 \mathrm{PH}_{5}$	-131.0	-135.2
$\mathrm{PH}_{6}{ }^{-} \rightarrow \mathrm{PH}_{6}{ }^{-}\left(D_{3 h}\right)$	+58.9	+55.2

${ }^{a} \Delta E$ is the difference between total energies of reactants and products without taking into account the zero-point vibration energies. A negative sign means the product (right member) is more stable.

As has been shown many times, the occupation of d AO's remains weak even for the formally $\mathrm{sp}^{3} \mathrm{~d}$ - and $\mathrm{sp}^{3} \mathrm{~d}^{2}$-hybridized species (see Table II).
B. Energetics. We report in Table III the SCF and CI calculated energy ΔE for some reactions. ΔE corresponds to ΔH° (gas), neglecting the difference in zero-point vibration energies. The CI results modify only slightly the values calculated at the SCF level.

The gas-phase proton affinity of PH_{3} was experimentally determined at $188 \mathrm{kcal} / \mathrm{mol}{ }^{40}$ Our calculated value is $7 \mathrm{kcal} / \mathrm{mol}$ greater. PH_{4}^{-}is not bound with respect to $\mathrm{PH}_{3}+\mathrm{H}^{-}$, but the CI reduces the corresponding energy difference to a small value. The SCF calculated energy difference $\mathrm{PH}_{3}+\mathrm{H}_{2} / \mathrm{PH}_{5}$ is in good agreement with the corresponding value calculated by Kutzelnigg et al. ($43 \mathrm{kcal} / \mathrm{mol}$). ${ }^{13}$ Concerning the effect of the CI, we found a negligible influence whereas these authors found that the CI (CEPA method) lowers this value by $4 \mathrm{kcal} / \mathrm{mol}$.

Due to the strength of the H_{2} bond, PH_{5} is not stable with respect to $\mathrm{PH}_{3}+\mathrm{H}_{2}$ while it is stable with respect to $\mathrm{PH}_{3}+2 \mathrm{H}$. Similarily $\mathrm{PH}_{6}{ }^{-}$is not stable with respect to $\mathrm{PH}_{4}^{-}+\mathrm{H}_{2}$, while it is stable with respect to $\mathrm{PH}_{5}+\mathrm{H}^{-}$. Dismutation of $2 \mathrm{PH}_{5}$ to $\mathrm{PH}_{6}{ }^{-}+\mathrm{PH}_{4}{ }^{+}$is unfavorable. For these two reactions, our energy values agree with the SCF values reported by Kutzelnigg. ${ }^{13}$
As expected $\mathrm{PH}_{6}{ }^{-}\left(D_{3 h}\right)$ is less stable than $\mathrm{PH}_{6}{ }^{-}\left(O_{h}\right)$. The SCF energy difference ($59 \mathrm{kcal} / \mathrm{mol}$) is much higher than the difference predicted by semiempirical calculations on $\mathrm{PH}_{6}{ }^{-}(41 \mathrm{kcal} / \mathrm{mol}$, CNDO; $15 \mathrm{kcal} / \mathrm{mol}$, MINDO/3), ${ }^{37}$ but it is less than the energy difference between $\mathrm{SH}_{6}\left(O_{h}\right)$ and $\mathrm{SH}_{6}\left(D_{3 h}\right)$ calculated at the SCF level ($97 \mathrm{kcal} / \mathrm{mol}$, STO-3G; $101 \mathrm{kcal} / \mathrm{mol}$, STO-3G+d). ${ }^{9}$

IV. PCl_{n} Systems

A. Structures. PCl_{3} was chosen to test the influence of d AO's in the chlorine basis set on the SCF calculated geometry. As can be seen in Table I, the d AO's on chlorine are required to obtain a correct geometry for $\mathrm{PCl}_{3}{ }^{41}$ Nevertheless, to reduce the size of the basis sets and computing time for the other PCl_{n} moelcules, the d functions were not included in the chlorine basis set. Most probably this explains the excessive length of our calculated $\mathrm{P}-\mathrm{Cl}$ bond lengths when compared with test results (see Table I). Our overestimation is $0.02-0.09 \AA$ except for $\mathrm{PCl}_{6}{ }^{-}$where the desagreement is more severe ($0.15 \AA$). The trend within our calculated values is, however, consistent.

[^3]Table IV. Calculated Reaction Energies for PCl_{n} Systems

reactions	$\Delta E(\mathrm{SCF}),{ }^{a} \mathrm{kcal} / \mathrm{mol}$
$\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$	+3.1
$\mathrm{PCl}_{3}+\mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{4}^{-}$	-18.9
$\mathrm{PCl}_{4}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{5}$	-122.0
$\mathrm{PCl}_{4}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{6}^{-}$	-158.6
$\mathrm{PCl}_{4}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{6}^{-}$	-14.7
$\mathrm{PCl}_{5}+\mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{6}^{-}$	-36.6
$\mathrm{PCl}_{6}^{-}+\mathrm{PCl}_{4}^{+} \rightarrow 2 \mathrm{PCl}_{5}$	-85.4
$\mathrm{PCl}_{6}^{-} \rightarrow \mathrm{PCl}_{6}{ }^{-*}\left(D_{3 h}\right)$	+64.6

${ }^{a}$ Same comments as in Table III.
The calculated $C_{2 v}$ structure for PCl_{4}^{-}shows the following peculiarity. The axial angle ClPCl is 185°. This contrasts with the calculated structure for $\mathrm{PH}_{4}^{-}, 2$. Attempts to prepare PCl_{4}^{-}

2
have failed, ${ }^{42}$ but the ion $\mathrm{PBr}_{4}{ }^{-}$has been prepared and its crystal structure has been determined. ${ }^{43}$ The ion has a $C_{2 v}$ structure with an axial angle $\angle \mathrm{BrPBr}$ of 170° across the lone-pair side of the structure. This would correspond to a 190° angle in $2(\alpha$ in Figure 1), agreeing with our "open" angle in $\mathrm{PCl}_{4}{ }^{-}$. This suggests a less stereospacial lone pair in such compounds. Indeed, in PCl_{4}^{-}the negative charge is distributed all over the chlorines, including the equatorial ones (see Table II), possibly inducing repulsions between equatorial and axial atoms. ${ }^{44}$

The Mulliken population analyses show polarizable $\mathrm{P}-\mathrm{Cl}$ bonds. This appears, for instance, through the difference in charge distribution between $\mathrm{PCl}_{6}{ }^{-}\left(O_{h}\right)$ and $\mathrm{PCl}_{6}{ }^{-}\left(D_{3 h}\right)$ (for $\mathrm{PH}_{6}{ }^{-}$, the net charges are identical for both geometries).
B. Energetics. Some SCF reaction energies involving PCl_{n} systems are reported in Table IV. Corrections due to the CI could be extrapolated from the results on PH_{n}, but these effects were shown to be minor.
PCl_{5} was calculated at $3 \mathrm{kcal} / \mathrm{mol}$ above $\left(\mathrm{PCl}_{3}+\mathrm{Cl}_{2}\right)$. This is in contradiction with other experimental results ${ }^{45}$ and could be due to our basis set or, in this isolated case, the CI could have stabilized the PCl_{5} form. PCl_{5} is known to exist under trigo-nal-bipyramidal neutral molecules in vapor phase, ${ }^{46}$ in molten states, and in most non-ionizing solvents. In the solid state PCl_{5} is $\left[\mathrm{PCl}_{4}{ }^{+}, \mathrm{PCl}_{6}^{-}\right],{ }^{47}$ and in solution in polar solvents PCl_{5} undergoes two competing equilibria: ${ }^{48}$

$$
\begin{align*}
2 \mathrm{PCl}_{5} & \rightleftharpoons \mathrm{PCl}_{4}^{+}+\mathrm{PCl}_{6}^{-} \tag{1}\\
\mathrm{PCl}_{5} & \rightleftharpoons \mathrm{PCl}_{4}^{+}+\mathrm{Cl}^{-} \tag{2}
\end{align*}
$$

Our calculated energetics of course refer to gas-phase species. According to our results, dismutation reaction 1 requires 85 $\mathrm{kcal} / \mathrm{mol}$ (SCF level) and heterolytic dissociation reaction 2 (which can be seen as the first step in dismutation (eq 1)) requires 122 $\mathrm{kcal} / \mathrm{mol}$ (SCF level). In the solid state, the stabilizing energy

[^4]

Figure 2. Calculated energies (in $\mathrm{kcal} / \mathrm{mol}$) of the two pathways for isomerization of PH_{6}^{-}and PCl_{6}^{-}.
due to the Madelung field overcompensates easily the loss of energy required by the dismutation of $2 \mathrm{PCl}_{5}$. In ionizing (i.e., polar) solvents, the solvation of each ionic species $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PCl}_{6}{ }^{-}$, and Cl^{-}brings the stabilizing energy required by the dissociation (eq 2) and a fortiori by the dismutation (eq 1).
$\mathrm{PCl}_{4}{ }^{-}$is bound with respect to $\left(\mathrm{PCl}_{3}+\mathrm{Cl}^{-}\right)$. PCl_{6}^{-}is more stable than $\left(\mathrm{PCl}_{4}^{-}+\mathrm{Cl}_{2}\right)$ and is bound with respect to $\left(\mathrm{PCl}_{5}+\right.$ Cl^{-}). The stabilization of the hexacoordinate form with respect to the pentacoordinate form is comparable for PCl_{5} and PH_{5}. On the other hand, the dismutation (or autoionization) of PCl_{5} (eq 1) demands less energy than that of $\mathrm{PH}_{5}(131 \mathrm{kcal} / \mathrm{mol}$ at the SCF level). $D_{3 h} \mathrm{PCl}_{6}{ }^{-}$is high in energy with respect to its O_{h} equilibrium geometry. A general trend that appears in Table IV is the good stability of PCl_{6}^{-}and the poor stability of $\mathrm{PCl}_{4}{ }^{+}$.

Jenkins et al. ${ }^{49}$ have reported thermodynamic data on some gas-phase processes involving $\mathrm{PCl}_{4}{ }^{+}$and $\mathrm{PCl}_{6}{ }^{-}$. Even if we use estimates of CI effects from Table III, our calculated ΔE 's are not in quantitative agreement with their calculated ΔH 's:

	$\Delta H 4^{49}$ $\mathrm{kcal} / \mathrm{mol}$	ΔE, $\mathrm{kcal} / \mathrm{mol}$
$\mathrm{PCl}^{+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{-}^{-}$	-203	-167
$\mathrm{PCl}_{5}+\mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{6}$	-62	-39
$\mathrm{PCl}_{4}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{PCl}_{5}$	-141	-129

V. Pathways for Isomerization of Hexacoordinate Phosphorus Compounds

The chiral phosphorus(VI) compounds such as tris-chelate anions give rise to enantiomeric isomerism 3. ${ }^{15,16}$ Two mechanisms

3
have been suggested for this isomerization: (1) a mechanism with bond rupture giving a pentacoordinate phosphorane and then a
(49) Jenkins, H. D. B.; Thakur, K. P.; Finch, A.; Gates, P. N. Inorg. Chem. 1982, 21, 423.

Table V. Calculated Reaction Energies for AsH_{n} Systems

	$\Delta E,{ }^{a} \mathrm{kcal} / \mathrm{mol}$	
reactions	SCF	CI
$\mathrm{AsH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{AsH}_{4}{ }^{+}$	-190.0	
$\mathrm{AsH}_{3}+\mathrm{H}^{-} \rightarrow \mathrm{AsH}_{4}{ }^{-}$	-2.2	-6.3
$\mathrm{AsH}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{AsH}_{5}$	+58.2	+58.6
$\mathrm{AsH}_{4}^{+}+\mathrm{H}^{-} \rightarrow \mathrm{AsH}_{5}$	-154.5	
$\mathrm{AsH}_{4}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{AsH}_{5}$	-342.3	-340.5
$\mathrm{AsH}_{4}^{-}+\mathrm{H}_{2} \rightarrow \mathrm{AsH}_{6}^{-}$	+27.7	
$\mathrm{AsH}_{5}+\mathrm{H}^{-} \rightarrow \mathrm{AsH}_{6}$	-32.6	
$\mathrm{AsH}_{6}^{-}+\mathrm{AsH}_{4}^{+} \rightarrow 2 \mathrm{AsH}_{5}$	-121.9	

${ }^{a}$ Same comments as in Table III.
Berry pseudorotation and closure to the other hexacoordinate isomer and (2) a direct trigonal twist mechanism without bond rupture, through a prismatic $D_{3 h}$ transition state.

Our results (see Tables III and IV) ${ }^{50}$ show that the dissociative route is much more probable than the direct twist mechanism. This is in qualitative agreement with semiempirical calculations on $\mathrm{PH}_{6}{ }^{-}$and $\mathrm{PF}_{6}{ }^{-37}$ and with ab inition calculations on $\mathrm{SH}_{6}{ }^{9}$ We therefore support the bond-rupture mechanism. The energetic pathways for the models $\mathrm{PH}_{6}{ }^{-}$and $\mathrm{PCl}_{6}{ }^{-}$are summarized in Figure 2. Experimental results plead in favor of this nondirect mechanism. Observed ΔG^{*} for such isomerizations of spirophosphoranes span from 14 to $21 \mathrm{kcal} / \mathrm{mol} .^{15,16}$ We think our models allow a choice between the two mechanisms. However, we cannot predict accurate ΔH values for the real complex systems; on the other hand the entropic terms ΔS were found to be of importance in these reactions. In any case, the $\mathrm{PR}_{6}{ }^{-}$systems have a nonflexible structure, unlike the PR_{5} systems, agreeing with the experimental results of Caruana et al. ${ }^{16}$

VI. AsH ${ }_{n}$ Systems

A. Structures. Calculations on mocel AsH_{n} molecules were carried out partly because our attention was drawn ${ }^{17-21}$ to a certain stability of arsoranides AsR_{4}^{-}whereas in the phosphorus series the phosphoranes are very common and the phosphoranides are more unstable. A previous work has established the reliability of our arsenic pseudopotential as far as structures and energetics are concerned. ${ }^{51}$ The SCF-calculated geometry of AsH_{3} given in Table I reproduces correctly the known geometry of AsH_{3}. The calculated structures for AsH_{n} models given in Table I are interesting since, to date, few ab initio calculations on arsenic compounds are available. ${ }^{52}$

Table I shows a great similarity between the structures of the AsH_{n} molecules and those of the PH_{n} molecules. As a whole the $\mathrm{As}-\mathrm{H}$ bonds are $0.1 \AA$ longer than the $\mathrm{P}-\mathrm{H}$ bonds. Another similarity between PH_{n} and AsH_{n} molecules appears in the Mulliken population analyses displayed in Table II. Net charges and d populations are pretty much the same on phosphorus and arsenic atoms with an exception in $\mathrm{AsH}_{6}{ }^{-}$where As bears a net charge of +0.86 (vs. +0.68 on P in $\mathrm{PH}_{6}{ }^{-}$).
B. Energetics. Table V reports the calculated reaction energies for some AsH_{n} systems. The CI is included only for some important points; its effects are nearly the same as those occurring in the PH_{n} systems.

No experimental value is available for the gas-phase proton affinity of arsine AsH_{3}; we predict a value of $\approx 180 \mathrm{kcal} / \mathrm{mol}$. AsH_{4}^{-}is bound with respect to AsH_{3} and H^{-}. This is a significant difference between arsenic and phosphorus. Moreover, this result agrees with experimental evidence ${ }^{17-21}$ for the stability of certain

[^5]Table VI. Results on Berry Inversion in PH_{5} and AsH_{5}

		PH_{5}	AsH_{5}
$C_{4 v}$ geometry a	XH basal	1.453	1.577
	XH apical	1.402	1.506
	$\angle \mathrm{H}_{\text {bas }} \mathrm{XH}_{\text {ap }}$	100.4	101.2
	SCF	2.8	3.2
Barrier $^{b} \Delta E=$	CI	2.0	2.5

${ }^{a}$ In \AA and deg. ${ }^{b}$ In kcal/mol.
Table VII. Selected stretching force constants, in mdyn/ \AA

$k_{\text {P-H }}$		$k_{\text {As-H }}$		$k_{\text {P-Cl }}$		
PH_{3}	3.8	AsH_{3}	3.2	PCl_{3}	2.9	$3.4{ }^{\text {a }}$
$\mathrm{PH}_{4}{ }^{-} \mathrm{ax}$	1.1	$\mathrm{AsH}_{4}{ }^{-} \mathrm{ax}$	1.2	$\mathrm{PCl}_{4}^{-} \mathrm{ax}$	1.0	
$\mathrm{PH}_{4}{ }^{-}$eq	3.6	$\mathrm{AsH}_{4}{ }^{-} \mathrm{eq}$	3.2	$\mathrm{PCl}_{4}-\mathrm{eq}$	2.5	
$\mathrm{PH}_{6}{ }^{-}\left(O_{h}\right)$	2.8	$\mathrm{AsH}_{6}{ }^{-}$	2.8	$\mathrm{PCl}_{6}{ }^{-}\left(\mathrm{O}_{h}\right)$	3.0	
$\mathrm{PH}_{6}{ }^{-}\left(D_{3 h}\right)$	2.6			$\mathrm{PCl}_{6}{ }^{-}\left(D_{3 h}\right)$	2.0	

${ }^{a}$ With d functions on chlorine.
arsoranides AsR_{4}^{-}while phosphoranides $\mathrm{PR}_{4}{ }^{-}$are very unstable. ${ }^{53}$
Another difference is the reduced relative stability of arsoranes AsH_{5} when compared to the stability of phosphoranes. This appears in the demanded energy of the reaction $\mathrm{XH}_{3}+\mathrm{H}_{2} \rightarrow$ XH_{5} which is greater for arsenic than for phosphorus. The stabilization of the hexacoordinate forms with respect to the pentacoordinate forms is of similar magnitude for arsenic and phosphorus. However, with respect to $\left(\mathrm{XH}_{4}{ }^{-}+\mathrm{H}_{2}\right), \mathrm{XH}_{6}{ }^{-}$is unbound by $28 \mathrm{kcal} / \mathrm{mol}$ when $\mathrm{X}=$ As and by only $11 \mathrm{kcal} / \mathrm{mol}$ when $X=P$, indicating again the stability of arsoranides.
C. Berry Pseudorotation in PH_{5} and AsH_{5}. Kutzellnigg and Wasilewski ${ }^{13}$ have clearly demonstrated that the mechanism of inversion in species such as $\mathrm{PH}_{5}\left(D_{3 h}\right)$ normally occurs through a Berry pseudorotation pathway via a square-pyramidal ($C_{4 v}$) transition state. Therefore, a simple calculation of the relative energy of this $C_{4 v}$ transition state gives the barrier for Berry pseudorotation and inversion. For PH_{5}, the most refined calculations give a barrier of $2 \mathrm{kcal} / \mathrm{mol} .{ }^{13}$ We have investigated this $C_{4 v}$ transition state for both PH_{5} and AsH_{5}. The results are reported in Table VI. As in the other species studied here, the geometries were optimized at the SCF level. For PH_{5}, the agreement is excellent with previous calculations for both geometry and energy. ${ }^{13,54}$ In $\mathrm{AsH}_{5}\left(C_{4 c}\right)$, the relative changes in bond lengths are remarkably the same as in PH_{5}. We predict a barrier of $2.5 \mathrm{kcal} / \mathrm{mol}$ which is not very different from the barrier in PH_{5}. The corresponding barriers in PF_{5} and in AsF_{5} have been measured from Raman spectra. ${ }^{55}$ They are in the same energy range although the barrier for AsF_{5} is inferior to that of PF_{5}. Some spiranic derivatives are known to prefer a C_{40} geometry over a $D_{3 h}$ one. ${ }^{56}$ We think this presents no conflict with our results since the energy difference of $2.5 \mathrm{kcal} / \mathrm{mol}$ in our model can be easily counterbalanced by electronic effects, steric hindrances, or cycle strains.

VII. Discussion and Conclusion

Throughout this work we have given evidence for some energetic differences between phosphorus and arsenic multicoordinate compounds. As far as the structures are concerned, the two series of compounds are quite similar. This is also true for the calculated force constants (Table VII) ${ }^{57}$ and orbital energy levels. Tables
(53) The analysis previously done for the PH_{n} systems (footnote 39)may be extended to account for the calculated relative stabilities of the phosphorus and arsenic hydrides. Since the $s-p$ gap is greater in As than in P , any structure that leaves an s-type lone pair intact would be more preferred by As than P . Therefore, AsH_{3} and AsH_{4}^{-}have greater stabilities than their phosphorus counterparts. This rationalizes most of the trends in Tables III and V.
(54) Shih, S. K.; Peyerimhoff, S. D.; Buenker, J. J. Chem. Soc., Faraday Trans. 2 1979, 75, 379.
(55) Bernstein, L. S.; Abramowitz, S.; Levin, I. W. J. Chem. Phys. 1976, 64, 3228.
(56) (a) Holmes, R. R. Acc. Chem. Res. 1979, 12, 257. (b) Day, R. O.; Holmes, J. M.; Sau, A. C.; Devillers, J. R.; Holmes, R. R.; Deiters, J. A. J. Am. Chem. Soc. 1982, 104, 2127. (c) Fish, R. H.; Tannous, R. S. Organometallics 1982, $1,1238$.

Table VIII. Highest Occupied Molecular Orbital (HOMO) Levels, in eV

	PH_{n}	AsH_{n}	PCl_{n}
AX_{3}	-10.38	-10.16	$-11.63(-11.21)^{a}$
$\mathrm{AX}_{4}{ }^{-}$	-22.78	-21.68	-19.17
AX_{4}	-1.27	1.56	-5.78
AX_{5}	-8.84	-8.58	-12.66
$\mathrm{AX}_{6}{ }^{-}$	-2.98	-3.17	-8.02

${ }^{a}$ With d functions on chlorine.
of eigenvalues for all species studied here are available upon request. They show an expected upward shift of the levels from PH_{n} to AsH_{n}, except for the HOMO levels of $\mathrm{AsH}_{4}{ }^{-}$and $\mathrm{AsH}_{6}{ }^{-}$. Nevertheless, this shift is small. We give in Table VIII the HOMO levels, which can be related to the first ionization potentials through Koopmans' theorem.

From a structural point of view, an ion such as $\mathrm{PCl}_{5}{ }^{2-}$ (which is not known, but $\mathrm{SbF}_{5}{ }^{2-}$ and $\mathrm{SbCl}_{5}{ }^{2-}$ are known) can be related to $\mathrm{PCl}_{6}{ }^{-}$since both have 6 electron pairs around the phosphorus atom. Consequently one can predict for $\mathrm{PCl}_{5}{ }^{2-}$ a C_{40} structure with an angle $\angle\left(r_{\text {basal }}, r_{\text {apical }}\right)<90^{\circ}$. The situation of $\mathrm{PCl}_{6}{ }^{3-}$ is different ${ }^{58}$ since this ion possesses a seventh lone pair that may
(57) In PH_{3} and AsH_{3}, we have the ratio $\left(k_{\mathrm{PH}} / k_{\mathrm{ASH}}\right)^{1 / 2}=1.09$ which is, incidentally, the ratio of the corresponding stretching frequencies (McKean, D. C.; Torio, I.; Morrisson, A. R. J. Phys. Chem. 1982, 86, 307), but the latter may follow directly from the atomic masses involved.
or may not be stereochemically active, giving a fluxional, nearoctahedron like XeF_{6} or a rigid octahedron like $\mathrm{TeCl}_{6}{ }^{2-}$.

In conclusion, the main results of our calculations are the following: (1) pentacoordinate phosphorus and arsenic compounds have a Lewis acid character; (2) hexacoordinate $\mathrm{PX}_{6}{ }^{-}$species have a rigid structure, ${ }^{59}$ unlike PX_{5} species; (3) their isomerization occurs preferably through bond rupture via a pentacoordinate intermediate; (4) structures of phosphorus and arsenic compounds are similar and so are the barriers to pseudorotation in PH_{5} and AsH_{5}; and (5) some energetic differences between phosphorus and arsenic multicoordinate compounds are significant, for instance the tendency toward a greater stability for arsoranides.

Acknowledgment. We are indebted to Drs. A. Klaebe, M. Koenig, and J. G. Wolf for many discussions and comments and to the referees for helpful criticisms.

Registry No. $\mathrm{PH}_{3}, 7803-51-2 ; \mathrm{AsH}_{3}, 7784-42-1 ; \mathrm{PCl}_{3}, 7719-12-2$; $\mathrm{PH}_{4}{ }^{+}$, 16749-13-6; $\mathrm{AsH}_{4}{ }^{+}$, 53250-40-1; $\mathrm{PCl}_{4}{ }^{+}, 15169-50-3 ; \mathrm{PH}_{4}^{-}$, 20774-06-5; $\mathrm{AsH}_{4}{ }^{-}, 90858-36-9 ; \mathrm{PCl}_{4}{ }^{-}, 29962-22-9 ; \mathrm{PH}_{5}, 13769-19-2$; $\mathrm{AsH}_{5}, 16612-59-2 ; \mathrm{PCl}_{5}, 10026-13-8 ; \mathrm{PH}_{6}{ }^{-}, 79839-88-6 ; \mathrm{AsH}_{6}{ }^{-}, 90858-$ 37-0; $\mathrm{PCl}_{6}{ }^{-}, 16920-87-9 ; \mathrm{P}, 7723-14-0 ; \mathrm{As}, 7440-38-2 ; \mathrm{H}^{+}, 12408-02-5$; $\mathrm{H}^{-}, 12184-88-2 ; \mathrm{H}_{2}, 1333-74-0 ; \mathrm{Cl}_{2}, 7782-50-5 ; \mathrm{Cl}^{-}, 16887-00-6$.
(58) An observation of $\mathrm{PCl}_{6}{ }^{3-}$ has been reported: Nabi, S. N.; Hussain,
A.; Ahmed, N. N. J. Chem. Soc., Dalton Trans. 1974, 1199 .
(59) At least when $\mathrm{X}=\mathrm{H}$ or Cl . Recently, fluxional PX ${ }_{6}$ species con-
taining three or more fluorine atoms have been reported: Dillon, K. B.; Platt, A. W. G. J. Chem. Soc., Chem. Commun. 1983, 19, 1089.

Deoxygenation of a Cluster-Coordinated Nitric Oxide

Douglas E. Fjare and Wayne L. Gladfelter*1
Department of Chemistry, The University of Minnesota, Minneapolis, Minnesota 55455. Received January 9, 1984

Abstract

The reaction of $\left[\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{NO})\right]^{-}$with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ yields the nitrosyl carbonyl cluster $\left[\mathrm{FeRu}_{3}(\mathrm{CO})_{12}(\mathrm{NO})\right]^{-}$. The rate of this reaction shows a first-order dependence on the concentration of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and is inhibited by addition of excess CO. A single-crystal X-ray crystallographic analysis of $\operatorname{PPN}\left[F e R u_{3}(C O)_{12}(N O)\right]\left[P 2_{1} / c\right.$ space group, $a=19.690(4) \AA$, $b=16.262$ (3) $\AA, c=15.911$ (5) $\AA, \beta=107.24$ (2) $\left.{ }^{\circ}, Z=4\right]$ revealed that the FeRu u_{3} tetrahedral core contained a terminal, linear nitrosyl ligand bound to the iron. Three carbonyls bridge the three iron-ruthenium bonds such that the overall symmetry is C_{3}. [$\left.\mathrm{FeRu}_{3}(\mathrm{CO})_{12}(\mathrm{NO})\right]^{-}$cleanly reacts to form CO_{2} and the nitrido cluster $\left[\mathrm{FeRu}_{3} \mathrm{~N}(\mathrm{CO})_{12}\right]^{-}$. A structural analysis of the $\mathrm{Et}_{4} \mathrm{~N}^{+}$salt of this cluster [$\left.P \overline{1}\right]$ space group, $a=12.464$ (1) $\AA, b=12.697$ (1) $\AA, c=9.437$ (2) $\AA, \alpha=94.40$ (2) ${ }^{\circ}, \beta=$ $100.17(2)^{\circ}, \gamma=107.75(1)^{\circ}, Z=2$] revealed that it has a butterfly framework of metal atoms with the nitrogen coordinated to all four metals. Three terminal carbonyl ligands are also coordinated to each metal. The iron is disordered over all four sites in the structure which means that two isomeric forms exist and cocrystallize. Isomer I contains Fe in the wing-tip position while the other (II) contains Fe in the hinge position. Solution spectroscopic evidence (infrared, ${ }^{13} \mathrm{C}$ NMR and ${ }^{15} \mathrm{~N} N \mathrm{NMR}$) shows that both isomers persist in solution. Measurement of the equilibrium constant for the isomerization, I \rightleftarrows II, at several temperatures between 25 and $68^{\circ} \mathrm{C}$ yielded $\Delta H=-3.5+1.0 \mathrm{kcal} / \mathrm{mol}$ and $\Delta \mathrm{S}=-13 \pm 2 \mathrm{eu}$. The rate of conversion of $\mathrm{I} \rightarrow$ II at $25^{\circ} \mathrm{C}$ is $(4.2 \pm 0.2) \times 10^{-7} \mathrm{~s}^{-1}$. Possible mechanisms for this unique isomerization are presented. A kinetic analysis of the deoxygenation of $\left[\mathrm{FeRu}_{3}(\mathrm{CO})_{12}(\mathrm{NO})\right]^{-}$to give $\left[\mathrm{FeRu}_{3} \mathrm{~N}(\mathrm{CO})_{12}\right]^{-}$over the temperature range from 25 to $65^{\circ} \mathrm{C}$ revealed that the deoxygenation is first order in cluster concentration. Possible mechanisms of the NO deoxygenation consistent with this and other observations are discussed.

The formation of polynuclear compounds containing main-group interstitial atoms is often a poorly understood process. With some notable exceptions ${ }^{2,3}$ the formation of clusters with interstitial atoms also involves changes in the nuclearity of the product. Despite having a reaction that proceeds in high yield, there are often too many bonds being broken and formed to develop a clear understanding of the reaction mechanism. Reaction 1 , which is an excellent synthetic reaction, exemplifies the problems faced

[^6]in such a study. ${ }^{4}$ The CO bond cleavage step (the point of exceptional interest) is just one of many involved in product formation.
\[

$$
\begin{equation*}
\mathrm{Fe}(\mathrm{CO})_{5}+\mathrm{Fe}(\mathrm{CO})_{4}{ }^{2-} \rightarrow\left[\mathrm{Fe}_{6} \mathrm{C}(\mathrm{CO})_{16}\right]^{2-} \tag{1}
\end{equation*}
$$

\]

Like the source of carbon in many carbido clusters ${ }^{5}$ the source of nitrogen in nitrido clusters is derived from its monoxide. ${ }^{6-13}$
(4) Tachikawa, M.; Geerts, R. L.; Muetterties, E. L. J. Organomet. Chem. 1981, 213, 11 .
(5) Tachikawa, M.; Muetterties, E. L. Prog. Inorg. Chem. 1981, 28, 203.
(6) Martinengo, S.; Ciani, G.; Sironi, A.; Heaton, B. T.; Mason, J. J. Am. Chem. Soc. 1979, 101, 7095.

[^0]: (1) (a) Laboratoire de Physique Quantique. (b) Laboratoire d'Elaboration et Structure des Molécules Phosphorêes. (c) Laboratoire de Synthèse et Physicochimie Organique.
 (2) (a) Kutzelnigg, W. J. Chim. Phys. Phys.-Chim. Biol. 1981, 78, 295. (b) Kutzelnigg, W. Angew. Chem. in press.
 (3) Wolf, R. Pure Appl. Chem. 1981, 1124.
 (4) (a) Rauk, A.; Allen, L. C.; Mislow, K. J. Am. Chem. Soc. 1972, 94, 3035. (b) Altman, J. A.; Yates, K.; Csizmadia, I. G. Ibid. 1976, 98, 1450.
 (5) Florey, J. B.; Cusachs, L. C. J. Am. Chem. Soc. 1972, 94, 3040.
 (6) Hoffmann, R.; Howell, J. M.; Muetterties, E. L. J. Am. Chem. Soc. 1972, 94, 3047
 (7) Strich, A.; Veillard, A. J. Am. Chem. Soc. 1973, 95, 5574.
 (8) Keil, F.; Kutzelnigg, W. J. Am. Chem. Soc. 1975, 97, 3623.
 (9) Hoffmann, R.; Howell, J. M.; Rossi, A. R. J. Am. Chem. Soc. 1976, 98, 2484.
 (10) Howell, J. M. J. Am. Chem. Soc. 1977, 99, 7447.
 (11) Kutzelnigg, W.; Wallmeier, H.; Wasilewski, J. Theor. Chim. Acta 1979, 51, 261.
 (12) (a) Krogh-Jespersen, M. B.; Chandrasekhar, J.; Würthwein, E. U.; Collins, J. B.; Schleyer, P. v. R. J. Am. Chem. Soc. 1980, 102, 2263. (b)
 Gimarc, B. M.; Liebman, J. F.; Kohn, M. Ibid. 1978, 100, 2334
 (13) Kutzelnigg, W.; Wasilewski, J. J. Am. Chem. Soc. 1982, 104, 953.

[^1]: (14) Koenig, M.; Klaebe, A.; Munoz, A.; Wolf, R. J. Chem. Soc., Perkin Trans. 2 1976, 955.
 (15) (a) Koenig, M. Thèse, Université Paul Sabatier, Toulouse, 1979. (b) Caruana, G. Thèse de 3ème cycle, Université Paul Sabatier, Toulouse, 1981. (16) (a) Caruana, G.; Koenig, M.; Klaebe, A., to be published. (b) Cavezzan, J.; Etemad-Moghadam, G.; Koenig, M., Klaebe, A. Tetrahedron Lett. 1979, 9, 795.
 (17) Maroni, P.; Holeman, M.; Wolf, J. G. Bull. Soc. Chim. Belg. 1977, 86, 199, 209.
 (18) Maroni, P.; Madaule, Y.; Wolf, J. G. Phosphorus 1975, 6, 43.
 (19) Skapski, A. C. Chem. Commun. 1966, 10.
 (20) Maroni, P.; Madaule, Y.; Zedde, Ch.; Wolf, J. G. Tetrahedron Lett. 1982, 23, 507
 (21) Madaule, Y. Thēse, Universitê Paul Sabatier, Toulouse, 1982 .
 (22) Durand, Ph.; Barthelat, J. C. Theor. Chim. Acta 1975, 38, 383.
 (23) Dupuis, M.; Rys, J.; King, M. F. J. Chem. Phys. 1976, 65, 383.
 (24) Trinquier, G.; Malrieu, J. P.; Rivière, P. J. Am. Chem. Soc. 1982, 104, 4529.

[^2]: ${ }^{a}$ In \AA and deg. The parameters are defined in Figure 1. When available, experimental values are given in parentheses (from ref 35 when non-precized). ${ }^{b}$ With d functions on chlorine. ${ }^{c}$ Reference 36 a . ${ }^{d}$ Reference 36 b .

[^3]: (39) This explanation, which holds also for the arsenic hydrides AsH_{n}, has been suggested by a referee. Bonding in second- and third-row main-group elements is dominated by large s-p gaps. To avoid hybridization, lone pairs keep s character and the bonding orbitals involve mainly p contributions. Therefore the nature of hybridization is similar in PH_{3} and $\mathrm{PH}_{4}{ }^{-}$. In $\mathrm{PH}_{4}{ }^{-}$ the weak axial bonds could be schematically constructed with a three-center four-electron bond by using one phosphorus p orbital. In the remaining systems $\mathrm{PH}_{4}^{+}, \mathrm{PH}_{5}$, and PH_{6}^{-}, phosphorus bears no lone pair and more hybridization is required. Actually d orbitals are more populated in XH_{5} and XH_{6}^{-}species (see Table II).
 (40) Staley, R. H.; Beauchamp, J. L. J. Am. Chem. Soc. 1974, 96, 6252.
 (41) See also: Marynick, D. S. J. Chem. Phys. 1980, 73, 3939.

[^4]: (42) Dillon, K. B.; Waddington, T. C. J. Chem. Soc., Chem. Commun. 1969, 413, 1317.
 (43) Sheldrick, W. S.; Schmidpeter, A.; Zwaschka, F.; Dillon, K. B.; Platt, A. W. G.; Waddingtor, T. C. J. Chem. Soc., Dalton Trans. 1981, 413.
 (44) In the spirit of footnote 39 , phosphorus is more hybridized in $\mathrm{PCl}_{4}{ }^{-}$ than in PH_{4}^{-}.
 (45) Pauling, L. "General Chemistry"; 3rd ed.; W. H. Freeman: San Francisco, 1970; p 245.
 (46) Adams, W. J.; Bartell, L. S. J. Mol. Struct. 1971, 8, 23.
 (47) Clark, D.; Powell, K. M.; Wells, A. F. J. Chem. Soc. 1942, 642.
 (48) Suter, R. W.; Knachel, H. C.; Petro, V. P.; Howatson, J. H.; Shore, S. G. J. Am. Chem. Soc. 1973, 95, 1474.

[^5]: (50) In our calculations on $\mathrm{PH}_{6}{ }^{-}, \mathrm{PCl}_{6}^{-}$, and $\mathrm{AsH}_{6}{ }^{-}$the constraints of symmetry O_{h} or $D_{3 h}$ are fixed. It can be verified in ref 37 that for such symmetrical 12 e species, the O_{h} and $D_{3 h}$ geometries correspond respectively to real minima and maxima (i.e., transition states) on the SCF hypersurface.
 (51) Trinquier, G.; Malrieu, J. P.; Daudey, J. P. Chem. Phys. Lett. 1981, 80, 552.
 (52) (a) For AsH ${ }_{3}$, see: Pietro, W. J.; Levi, B. A.; Here, W. J.; Stewart, R. F. Inorg Chem. 1980, 19, 2225. Marynick, D. S.; Dixon, D. A. Faraday Discuss. Chem. Soc. 1976, 62, 47. Simons, G.; Talaty, E. R. J. Chem. Phys. 1977, 66, 2457. (b) For $\mathrm{H}_{3} \mathrm{As}=\mathrm{CH}_{2}$ see: Strich, A. Nouv. J. Chim. 1979, 3, 105. (c) For $\mathrm{AsF}_{6}{ }^{-}$see: Teramae, H.; Tanaka, K.; Yamabe, T. Solid State Commun. 1982, 44, 431.

[^6]: (1) Fellow of the Alfred P. Sloan Foundation (1983-1985).
 (2) Hayward, C. M. T.; Shapley, J. R. Inorg. Chem. 1982, 21, 3816.
 (3) Kolis, J. W.; Holt, E. M.; Drezdon, M.; Whitmire, K. H.; Shriver, D. F. J. Am. Chem. Soc. 1982, 104, 6134.

